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ABSTRACT 
If the conditions for the existence of a unique optimum overrelaxation factor are satisfied in a jury problem, 

then component suppression is a useful aid. In  jury-marching forecast models, there is no unique optimum over- 
relaxation factor, because the error vector at acceptance is not dominated by the eigenvector corresponding to the 
spectral radius. The criterion for fewest iterations is not then the minimization of the spectral radius. It is advantageous 
to decrease the overrelaxation factor in a predetermined manner during the first two or three time steps or after 
component suppression. Theoretical results are derived to explain the original purely empirical observations that 
the coefficient which minimizes the spectral radius requires about 50 percent more computing time than is necessary. 

1. INTRODUCTION 
Relaxation (iterative or successive approximation) 

methods are necessary in many finite difference calcula- 
tions, either for econoniy or because alternative methods 
exceed the storage capacity of existing computers. All 
the procedures discussed in this paper involve a diagnostic 
problem (also called a jury problem); the forecast pro- 
cedures involve both jury and marching problems. 

A diagnostic problem means finding the solution vector 
X of an equation 

AX=b ( 1) 

in which the coefficient matrix A (or order N) and vector b 
are known; if the matrix A is sparse (most of the co- 
efficients zero) or if its elements can be computed by 
some formula, then i t  is usually not stored explicitly. 
An example of a jury problem is the solution of the omega 
equation, discussed by Stuart and O’Neill [9], and O’Brien 
[8]; another example occurs in the barotropic model, in 
which the solution vector X is the tendency field a+/& 
of the stream function + and the vector b represents the 
rate of change of relative vorticity V2( a+/&). Further 
examples are given in textbooks on numerical weather 
prediction or numerical analysis, and are included in 
modern courses in dynamic and synoptic meteorology: 
Fox [6], Thompson [lo], Young [13]. 

Some initial guess vector X‘O) is chosen; an all-zero 
vector is commonly used unless some prior information is 
available. The successive approximations X”c) may be 
generated by the Jacobi process 

j#i 
~~ ~ 
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or by the Gauss-Seidel process (which also halves storage) 

i-1 N 

j=l 
C a i j Z F ’ + b t ,  (3) Z;k+l’- t n + n = _  E a  Z ‘ k + l ) -  

i5 J j=i+1 -Y, 

or by the Accelerated Liebmann or Overrelaxation process 
(which requires the same storage as Gauss-Seidel) 

21”” = w V ; k  +I)  + (1 x y )  (4) 

where the vector Y is given by the Gauss-Seidel equation 
(3), and where w is the overrelaxation factor. In  any of 
these methods, nearly all the elements ai, are zero. The 
balance of this paper is concerned solely with the theory 
and practice of overrelaxation. Practical details of itera- 
tion can be found in almost any textbook of numerical 
analysis, e.g. Fox [6 or 71, Fadeeva [4], Fadeev and 
Fadeeva [3], Forsythe and Wasow [5], Young [13]. 

2. EXISTENCE OF AN OPTIMUM 
The existence of an optimum overrelaxation factor 

(called “optimum omega” by many authors) for fewest 
iterations depends on a property of the error vector E(’”) 
and residual vector R(k) which will now be developed. 

The error vector 

E ( k )  =X -X ( V  (5) 

where X is the true solution of equation (I), which can be 
estimated but not determined exactly. 

The residual vector 

R( I C )  = X ( k + l )  - X ( k )  (6) 

and is known explicitly a t  every iteration. The usual 
method, is to accept the kth successive approximation 
X@) when some norm tYk) of R@-l) (for instance, its 
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absolutely largest element, or the sum of the squares of its 
elements, or the sum of the absolute values of its elements) 
becomes smaller than some given convergence criterion E 

Carre [2] and many textbooks show that the iterative pro- 
c.edure (4) is equivalent to  

(8) E (k) = ME (8-1) = M *E@) 

where the relaxation matrix M is given by 

M = -  (wL+I)-'[wR+(~0-11)1] (9) 

and where L is the lower triangular matrix of A ,  R is the 
upper triangular matrix of A (both L and R have zeros on 
the main diagonal), and I is the identity matrix (unity on 
the main diagonal, and zero everywhere else). Equation 
(9) assumes that A has ones on the main diagonal, but 
this causes no loss of generality. 

The relaxation matrix M possesses N scalar eigenvalues 
X and N eigenvectors U which obey 

MUi=XiUi 
or. equivalently 

N 

where uij  is the j th  element of Ui. The explicit evaluation 
of eigenvalues and eigenvectors is discussed in many 
textbooks (Fox [6 or 71, Fadeev and Fadeeva [3], Wilkinson 
[12], Todd [ll]) but is normally prohibitive for the 
matrices of high order which occur in diagnostic problems; 
this paper requires only certain theoretical properties. We 
shall ignore pathological cases which do not arise in 
practice. 

Any vector Y(O) may be expressed in terms of the 
eigenvectors U and a coefficient vector C as 

from equations (8) and (10). 

if we ignore the pathological case 
If Xl.is the absolutely largest of the eigenvalues X, and 

s,=O (15) 

then for all sufficiently large k 

Because an eigenvector may be multiplied by any 
constant without invalidating equation (lo),  equation (14) 
may be used as the basis of the power method (Fox [7], 
Fadeev and Fadeeva [3], Wilkinson [12]) of estimating the 
eigenvector U1 corresponding to the absolutely largest 
eigenvalue (spectral radius) XI of the matrix M (or any 
other matrix), and the spectral radius itself. The simple 
extensions of (16) necessary when (15) holds are discussed 
by Fadeev and Fadeeva [3], and Wilkinson [12], but are 
inconsequential to this paper. 

Further, in the particular case when 

yCO)=E(O)=X-X(O) (17) 

equation (14) shows that the necessary and sufficient 
condition for the equivalence of minimizing the spectral 
radius of M and of minimizing the number of iterations 
required for acceptance of X ( k )  according to equation (7) 
is that a t  acceptance the error vector E(%) shall be domi- 
nated by the coefficient Xfc, of U,. 

This assumption is implicit in all the publications cited; 
i t  is not normally valid in practical forecast models. When 
it is invalid, the least number of iterations before accept- 
ance does not necessarily depend on the minimization of 
any one eigenvalue (or any assortment of eigenvalues) ; 
there is not necessarily any unique optimum value of 
omega for fewest iterations. 

An extreme case of purely illustrative interest is that 
in which the acceptance criterion E is so large that almost 
any initial guess vector X'O) is accepted immediately. 
Practical illustrations are given in section 6 .  

Nothing in this existence proof has made any assump- 
tions about the matrix A (except that pathological cases 
are ignored); in particular, we do not need the assump- 
tions of symmetry, positive definiteness, and ''property 
A" which Carr6 [2], O'Brien [8], and others must make 
in order to give an explicit value for the optimum omega 
in terms of the eigenvalues of A. 

.These concepts are readily extended to line, block, and 
alternating-direction methods. 

3. AITKEN EXTRAPOLATION 

Under the necessary and sufficient condition (16), 

X - X ( k )  =E('") (5) 

(8) 

=.X~E('C-~) =XI (X-X(k-1) ). (18) 

equations (5) and (8) reduce to 

-ME(k-l) - 

Both X"") and X(*-') are known; the solution of (18) 
for X is called Aitken extrapolation, which is a special 
form of component suppression (Fadeev and Fadeeva [3]) : 

(1 

x"x=(x"--x~x"c-")/(1-h~). (19) 

Process (19) requires an estimate of the spectra radius 
for i=2, 3, . . . , N .  XI,  which is available from the classical theory (Cam6 [2]). 
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Part of CarrB’s work consists effectively in an application 
of (18) and (19) at three successive iterations to obtain 
an estimate of the spectral radius X1 by the power method; 
other difficult cases are treated extensively by Fadeev 
and Fadeeva [3]. It is, however, interesting to consider a 
generalized Aitken extrapolation based on a more precise 
form of (18) and on the recognition that condition (16) 
for the classical theory may be invalid : we shall also begin 
to distinguish between real and complex eigenvalues. 

More precisely, if hl in equation (19) is replaced by an 
arbitrary constant A (real if the solution vector X is real), 
then the residual error vector - - 

E = X - X = (X - AX- X‘’) +XX(’-l) M 1 - A )  

= (E””’ - XE””-”) /( 1 -A) 

=c (A, -X)XZ- lczUr/(l -X) 

(20) 

(21) 

(22) 
N 

1=1 

N 

= c 1=1 ptXrk-’c,U, 

where the vector of aniplification factors Q is given by 

q f = ( X i - A ) / ( l - X ) .  (24) 

Carre [2] proves that the absolutely largest eigenvalue is 
real and positive for the class of matrix considered in the 
classical theory if 

l < W < W O , I .  (25) 

If X is an estimate of X1, the amplification factors will 
be near zero not only for  A1 but also for real subdominant 
eigenvalues close to X1. Generalized Aitken extrapolation 
is a valuable technique when several eigenvectors contrib- 
ute substantially to the error vector, especially when the 
spectral radius of the relaxation matrix M is very close 
to unity for all values of omega. 

It, is possible to obtain a reasonable idea of the eigen- 
values (provided they are real) corresponding to those 
eigenvectors which dominate the error vector by trying 
various values of the extrapolation constant A. After each 
extrapolation, the residual error vector is dominated by 
eigenvectors corresponding to eigenvalues not close to 
X. It is inconsequential a t  what step Aitken extrapolation 
is used; Carre [2] and Fox [6] recommend its use a t  the 
end of a relaxation solely in order to obtain X as an esti- 
mate of X I  by the power method. 

4. COMPLEX EIGENVALUES 
Practical relaxation matrices have some or all of their 

eigenvalues and eigenvectors complex ( C a d  [2]), even 
though the matrix A, the solution vector X, the vector b 
and all intermediate calculations involve only real 
quanti ties. 

If A is symmetric, then the complex eigenvalues of M 
occur in complex conjugate pairs. When A is not sym- 
metric (for instance, in the National Meteorological 

Center operational barotropic model with mountains and 
friction), the complex eigenvalues and eigenvectors are 
not necessarily complex conjugate; nevertheless all the 
calculations may involve only real quantities. 

In the complex case, all references to absolute values 
must be replaced by references to moduli. 

According to Fadeev and Fadeeva 131, methods of 
component suppression analogous to generalized Aitken 
extrapolation are poorly developed in the complex domain; 
the powerful methods available in the real domain 
require increased variable storage. 

5. FORECAST MODELS 

Many finite difference forecast models known to the 
author involve a jury problem of the form of equation 
(1); nearly all these models involve a jury problem a t  
each time step. In a wide class of geostrophic, quasi- 
geostrophic and stream function models, there is a jury 
problem in which the matrix A and the vector b are 
known functions of the state of the system (for instance, 
,in the simplest barotropic models A is a fixed matrix 
and b is the time derivative of the relative vorticity), and 
the solution vector X is the time derivative of the geo- 
potential or stream field. Some models require repeated 
solutions of the vertical velocity (omega) equation dis- 
cussed by Stuart and O’Neill [9] and O’Brien [8]. 

The significant difference from ordinary jury problems 
is in the first guess X(O) at the solution vector. I n  forecast 
models, it is common to use 

x,c!)o=o (26) 

at time step t=O, but a t  each subsequent time step to 
use as the first guess the solution vector accepted a t  the 
previous time step. 

(27) X (0) - X ( a c c e P f e d ) .  
I - T -  t - T - 1  

In practical cases, the condition 

IA:cll>>lxfcfl , c=2, 3, . . *, N (16) 

is satisfied only at  the first one or two time steps. At all 
subsequent time steps, the convergence criterion 

6”)<€ (7) 

is satisfied with fewest iterations by minimizing some 
statistical melange of eigenvalues, eigenvectors, and 
coefficients, all of which depend in an unknown manner 
on the overrelaxation factor w ,  time, and initial con- 
ditions. Empiricism and rules of thumb are the best 
solutions to  such a problem. 

In meteorological terms, the interpretation of these 
phenomena is simple. As noted by Thompson [IO], the 
largest eigenvalues in forecast models are associated with 
the planetary waves; at  time t=O and possibly t = l ,  it 
is the planetary waves whose tendencies dominate the 
error vector. At all subsequent times, the tendencies of 
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TABLE 1.-Number N of interations required and maximum residual R for  the simple barotropic model of Young [ l S ] .  The  residual i s  for height 
tendency dzldt in cm./sec. X IO+; the convergence criterion given by equation (7) was a maximum modulus norm less than 4 x 10-3 m.lsec., 
which causes differences of less than 1 ft., in a 36-hr. forecast. 

Overrelaxation Factor 

-- 

I Time Step I Time Step I Time Step - ---- -- 
N 1 R / N  2 R I N  3 R I N  4 R I N  16 R I P  17 R l N  18 R / N  19 R N 32 R I N  33 R I N  34 R I N  36 R 

----______.-_I_------__ -̂--- 

1.65 __..._._._._... ~ ...-....- 
1.58 _______._._._._._........ 
1.56 ____.____...._.._._...... 
1.54 ......................... 
1.52 ......................... 
1.50 _._._._._..............-. 

1.45 ____._.__...._..._....... 
1.42 _____._._................ 

1.40 ......................... 
1.38 ......................... 
1.36 ____._._._._.__._....-... 

18 3.44 
15 3.92 
15 3.75 
15 3.64 
15 3.64 
15 3.71 
15 3.95 
16 3.60 
16 3.72 
16 3.85 
16 3.97 

12 2.69 
10 3.10 
10 2.68 
10 2.35 
9 3.39 
9 3.08 
9 2.49 
8 3.53 
8 3.19 
8 2.87 
8 2.56 

12 2.86 
10 3.53 
10 2.86 
9 3.61 
9 3.35 
9 2.94 
8 4.00 
8 3.21 
8 2.90 
8 2.60 
8 2.32 

11 3.59 
9 3.96 
9 3.57 
9 3.23 
9 2.91 
8 3.97 
8 2.92 
8 2.43 
7 3.27 
7 3.27 
7 2.90 

16 3.73 
14 3.00 
13 3.58 
13 3.19 
12 3.89 
12 3.49 
11 3.85 
11 3.34 
11 3.38 
11 3.45 
11 3.51 

17 3.60 
15 3.24 
14 3.54 
14 3.00 
13 3.52 
13 3.06 
12 3.13 
11 3.85 
11 3.89 
11 3.96 
12 3.48 

19 2.92 
16 3148 
15 3.56 
14 3.70 
14 3.05 
13 3.39 
12 3.61 
12 3.78 
12 3.87 
12 3.97 
12 3.97 

20 3.05 
17 3.32 
16 3.59 
15 3.67 
14 3.39 
13 2.96 
13 3.63 
13 3.79 
13 3.90 
14 3.54 
14 3.62 

27 2.22 
22 3.47 
21 3.16 
20 3.28 
19 3.44 
18 3.55 
17 2.79 
16 2.85 
15 3.65 
15 2.94 
14 3.65 

22 3.31 
18 3.31 
17 3.33 
16 3.25 
15 3.35 
14 3.61 
14 3.49 
14 3 . a  
14 2.98 
13 3.99 
13 3.57 

26 2.66 
20 3.57 
19 3.36 
18 3.27 
17 3.33 
16 3.46 
15 2.66 
14 2.84 
13 3.81 
13 3.07 
13 2.40 

23 3.82 
20 3.24 
19 3.39 
18 3.68 
18 2.96 
17 3.23 
16 2.59 
16 2.97 
14 3.81 
14 3.16 
14 2.55 

the slowly moving planetary waves change little, so that 
equation (27) is a good guess for them; the error vector 
for t > l  is dominated by eigenvectors corresponding to 
the fast-moving short waves, which are associated with 
relatively small eigenvalues. 

6. VERIFICATION 
In  this case, the verification preceded and largely 

inspired the theory. Table 1 shows the number of itera- 
tions required at  each time step and the maximum residual 
a t  acceptance for the 14- by 23-point barotropic model 
described by Young [13], for which he estimated the 
optimum omega (for minimum spectral radius) as 1.65. 

At the first time step, the optimum omega is near 1.53; 
at  steps 2 4  it is less than 1.36. The experiments were not 
carried to sufficiently low omega because it was not 
realized that the optimum omega might depend on the 
time step. The optimum value fluctuates slightly during 
the forecast; it is not known how this effect is partitioned 
between changes in the waves present in the system and 
accidental fluctuations in the residuals. Comparable 
figures can be obtained only on identical models; the 
exact numbers vary with the sequence of iteration and 
other coding changes inconsequential to the forecast, 
because of differences in the coefficient vector C in equa- 
tion (13). Experiments with an independently coded 
version of the same model showed that the optimum 
omega was usually near 1.35 but sometimes fell as low 
as 1.20. The computing time is increased about 50 percent 
by the use of the theoretically optimum value. 

Separate experiments were made to verify that the 
accepted tendency field was essentially independent of 
the value of the convergence criterion in the working 
range. 

A few experiments were performed on the National 
Meteorological Center operational barotropic model; 
although the results were similar and independent of the 
convergence criterion, they are difficult to analyze 
theoretically, because the fact that the model sets negative 

absolute vorticities to zero proved to be a major effect in 
the cases of unusually bad forecasts which were available 
as initial data (Bradley, Hayden, and Wiin-Nielsen [ 11) 
and because the mountain and friction terms cause the 
matrix A in equation (1) to vary slowly. The operational 
model was modified, however, to make the overrelaxation 
factor a predetermined function of the time step, 1.70 
initially and 1.30 a t  all subsequent steps. 

Experiments with Aitken extrapolation by equation 
(20) were performed on Young’s barotropic model for 
the values of the extrapolation factor X from 2.0 to -2.0 
for overrelaxation factors from 1.8 to 1.05, and for con- 
vergence criteria of 0.004 to 0.001 cm./sec. In all cases, 
a very slight and occasional advantage was obtained for 
X in the range 0.1 to -0.1, so small that the additional 
computations were uneconomic. The extrapolation was 
performed a t  every fifth iteration. 

This result may be interpreted in terms of CarrB’s [2] 
theory of the distribution of eigenvalues; the real eigen- 
values are positive and greater than or equal to (w-1), 
and the complex eigenvalues all are of modulus (w - 1). 
The results are construed to mean that even a t  the first 
time step and even for the tightest convergence criterion 
(0.001 cm./sec.) the error vector is not dominated by the 
eigenvector corresponding to the spectral radius according 
to equation (16): equation (24) shows that the modulus 
of the amplification factor q cannot necessarily be made 
less than unity for complex eigenvalues. This interpre- 
tation is consistent with the finding that the optimum 
omega a t  the first time step is lower than the value of 
1.65 predicted by Young [13]. 

The author intends to include tests of more powerful 
component suppression methods in a future paper. 
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